
JSS Journal of Statistical Software
June 2012, Volume 49, Issue 9. http://www.jstatsoft.org/

Supplement to:

RKWard – A Comprehensive Graphical User

Interface and Integrated Development Environment

for Statistical Analysis with R

Stefan Rödiger
Charité-Universitätsmedizin Berlin

Thomas Friedrichsmeier
Ruhr-University Bochum

Prasenjit Kapat
The Ohio State University

Meik Michalke
Heinrich Heine University

Düsseldorf

Abstract

RKWard is a GUI to R with the objective to provide a portable and extensible R
interface for both basic and advanced statistical and graphical analysis. This supple-
ment discusses in detail technical aspects of RKWard including the usage of the KDE/Qt
software libraries which are the base of RKWard. Statistical procedures and plots are
implemented as an extendable plugin architecture in RKWard. This plugin architechture
is based on ECMAScript (JavaScript), R, and XML. The general design is described and
its application is exemplified on a Student’s t test.

Keywords: cross-platform, GUI, integrated development environment, plugin, R.

1. Introduction

In this supplement we will give an overview of some key aspects of RKWard’s technical
design and development process, comparing them briefly to competing GUI solutions, where
appropriate. We will give slightly more attention to the details of the plugin framework
(Section 6) used in RKWard, since this is central to the extensibility of RKWard, and we will
conclude with an example for extending RKWard by a plugin (Section 7).

Note that this document refers to RKWard version 0.5.6. Several technical details, described

http://www.jstatsoft.org/

2 Supplement to: RKWard a GUI for R

here, have changed in RKWard version 0.5.7 and the current development version.

2. Asynchronous command execution

One central design decision in the implementation of RKWard is that the interface to the
R engine operates asynchronously. The intention is to keep the application usable to a high
degree, even during the computation of time-consuming analysis. For instance, while waiting
for the estimation of a complex model to complete, the user should be able to continue to use
the GUI to prepare the next analysis. Asynchronous command execution is also a prerequisite
for an implementation of the plot-preview feature (see the section no graphics windows in the
main article). Internally, the GUI frontend and the R engine run in two separate processes1.
Commands generated from plugins or user actions are placed in queue in the frontend and
are evaluated in the backend process in the order they were submitted2.

The asynchronous design implies that RKWard avoids relying on the R engine during inter-
active use. This is one of several reasons for the use of ECMAScript in plugins, instead of
scripting using R itself (see Sections 4 and 6). A further implication is that RKWard avoids
querying information about the existence and properties of objects in R interactively. Rather,
RKWard keeps a representation of R objects and their basic properties (e. g., class and dimen-
sions), which is used for the workspace browser, object name completion, function argument
hinting, and other places. The object representation includes objects in all environments
in the search path, and any objects contained within these environments in a hierarchical
tree3. The representation of R objects is gathered pro-actively4. This has a notable impact
on performance when loading packages. Specifically, objects which would usually be “lazy
loaded” only when needed (see Ripley 2004) are accessed in order to fetch information on
their properties. This means the data has to be loaded from disk; however, the memory is
freed immediately after fetching information on the object. Additionally, for packages with
extremely large number of objects, RKWard provides an option to exclude specific packages
from scanning the object structures.

A further side-effect of the asynchronous threaded design is that there is inherently a rather
clear separation between the GUI code and the code making direct use of the R application
programming interface (API) (see also Figure 1). In future releases it could be made possible
to run GUI and R engine on different computers.

1 Up to RKWard version 0.5.4, two separate threads inside a single process were used. This alternate design
is still available as a compile time option.

2 It is possible, and in some cases necessary, to enforce a different order of command execution in internal
code. For instance, RKWard makes sure that no user command can potentially interfere while RKWard is
loading the data of a data.frame for editing.

3 Currently, environments of functions or formulas are not taken into account, but slots of S4 objects, and
package namespace environments are represented in the object tree.

4 To limit the amount of processing, and to avoid recursion, RKWard currently stops gathering object
information at a depth of three levels. Information on deeper levels is gathered on an as-needed basis, when
the user accesses information on the respective parent objects.

Journal of Statistical Software 3

R engine

R engine runs in a separate process

R command queue
and interface

RKWard

R code is generated in a separate thread

PluginPlugin

R Console

Script editor(s)

Data editor(s)

ECMAScript backend ECMAScript backend

Figure 1: Technical design of RKWard. Only a few central components are visualized. All
communication with the R engine is passed through a single interface living in the frontend
process. The R engine itself runs in a separate process. Separate threads within the frontend
process are used to generate R code from plugins.

3. Object modification detection

RKWard allows the user to run arbitrary commands in R at any time, even while editing
a data.frame or while selecting objects for analysis in a GUI dialog. Any user command
can potentially add, modify, or remove objects in R. RKWard tries to detect such changes in
order to always display accurate information in the workspace browser, object selection lists,
and object views. Beyond that, detecting any changes is particularly important with respect
to objects which are currently being edited in the data editor (which provides an illusion of
in-place editing, see the section on the spreadsheet-like data editor in the main article). Here,
it is necessary to synchronize the data between R and the GUI in both directions.

For simplicity and performance, object modification detection is only implemented for objects
inside the “global environment” (including environments inside the global environment), since
this is where changes are typically done. Currently, object modification detection is based
on active bindings. Essentially, any object which is created in the global environment is first
moved to a hidden storage environment, and then replaced with an active binding. The active
binding acts as a transparent proxy to the object in the storage environment, which registers
any write-access to the object5.

The use of active bindings has significant performance implications when objects are accessed
very frequently. This is particularly notable where an object inside the global environment is
used as the index variable in a loop, as illustrated by the following example. When control
returns to the top level prompt, after the first assignment, i will become subject to object
modification detection (i. e., it will be wrapped into an active binding). The subsequent for

5 This is similar to the approach taken in the trackObjs package (Plate 2009).

4 Supplement to: RKWard a GUI for R

loop will then run slow.

R> i <- 1

R> for (i in 1:100000) i + i

In contrast, in the following example, i is a local object, and will not be replaced by an active
binding. Therefore the loop will run approximately as fast as in a plain R session:

R> f <- function () {

R+ i <- 1

R+ for (i in 1:100000) i + i

R+ }

R> f ()

Future versions of RKWard will try to avoid this performance problem. One approach that is
currently under consideration is to simply perform a pointer comparison of the SEXP records
of objects in global environment with their copies in a hidden storage environment. Due to
the implicit sharing of SEXP records (R Development Core Team 2012b,a), this should provide
for a reliable way to detect changes for most types of R objects, with comparatively low
memory and performance overhead. Special handling will be needed for environments and
active bindings.

4. Choice of toolkit and implementation languages

In addition to R, RKWard is based on the KDE libraries (KDE e.V. 2012), which are in turn
based on Qt (Nokia Corporation 2012), and implemented mostly in C++. Compared to many
competing libraries, this constitutes a rather heavy dependency. Moreover, the KDE libraries
are still known to have portability issues especially on Mac OS X, and to some degree also on
the Microsoft Windows platform (Jarvis 2010).

The major reason for choosing the KDE and Qt libraries has been the many high level features,
they provide. This has allowed RKWard development to make quick progress despite limited
resources. Most importantly, the KDE libraries provide a full featured text editor (Cullmann
n.d.) as a component which can be seamlessly integrated into a host application using the
KParts technology (Faure 2000). Additionally, another KPart provides HTML browsing
capabilities in a similarly integrated way. The availability of KWord (KOffice.Org 2010) as an
embeddable KPart might prove useful in future versions of RKWard, when better integration
with office suites will be sought. Additionally Qt libraries offer the encapsulation of the look-
and-feel on specific platforms for a high degree of interoperability and a wide selection of
powerful widgets (Raaphorst 2003).

Another technology from the KDE libraries that is important to the development of RKWard
is the “XMLGUI” technology (Faure 2000). This is especially helpful in providing an inte-
grated GUI across the many different kinds of document windows and tool views supported
in RKWard.

Plugins in RKWard rely on XML (http://www.w3.org/XML/) and ECMAScript (http://
www.ecmascript.org/; see Section 6). XML is not only well suited to describe the layout of

http://www.w3.org/XML/
http://www.ecmascript.org/
http://www.ecmascript.org/

Journal of Statistical Software 5

the GUI of plugins, but simple functional logic can also be represented (see also Visne et al.
2009). ECMAScript was chosen for the generation of R commands within plugins, in particular
due to its availability as an embedded scripting engine inside the Qt libraries. While at first
glance R itself would appear as a natural choice of scripting language as well, this would make
it impossible to use plugins in an asynchronous way. Further, the main functional requirement
in this place is the manipulation and concatenation of text strings. While R provides support
for this, concatenating strings with the +-operator, as available in ECMAScript, allows for a
very readable way to perform such basic text manipulation.

5. On-screen graphics windows

Contrary to the approach used in JGR (Helbig et al. 2011), RKWard does not technically
provide a custom on-screen graphics device. RKWard detects when new graphics windows are
created via calls to X11() or windows(). These windows are then “captured” in a platform
dependent way (based on the XEmbed (Ettrich and Taylor 2002) protocol for X11, or on
reparenting for the Microsoft Windows platform). An RKWard menu bar and a toolbar is
then added to these windows to provide added functionality. While this approach requires
some platform dependent code, any corrections or improvements made to the underlying R
native devices will automatically be available in RKWard.

A recent addition to the on-screen device is the “plot history” feature which adds a browsable
list of plots to the device window. Since RKWard does not use a custom on-screen graphics
device, this feature is implemented in a package dependent way. For example, as of this
writing, plotting calls that use either the “standard graphics system” or the “lattice system”
can be added to the plot history; other plots are drawn but not added. The basic procedure
is to identify changes to the on-screen canvas and record the existing plot before a new plot
wipes it out. A single global history for the recorded plots is maintained which is used by all
the on-screen device windows. This is similar to the implementation in Rgui.exe (Microsoft
Windows), but unlike the one in Rgui.app (Mac OS X). Each such device window points to a
position in the history and behaves independently when recording a new plot or deleting an
existing one.

Plot history support for the lattice system (Sarkar 2008) is implemented by inserting a
hook in the print.lattice() function. This hook retrieves and stores the lattice.status

object from the lattice:::.LatticeEnv environment, thereby making update() calls on
trellis objects transparent to the user. Any recorded trellis object is then replayed using
plot.lattice(), bypassing the recording mechanism. The standard graphics system, on the
other hand, is implemented differently because the hook in plot.new() is ineffective for this
purpose. A customized function is overloaded on plot.new() which stores and retrieves the
existing plot, essentially, using recordPlot() and replays them using replayPlot().

The actual plotting calls are tracked using appropriate sys.call() commands in the hooks.
These call strings are displayed as a drop-down menu on the toolbar for non-sequential brows-
ing (see the section on graphics windows in the main article) providing a very intuitive brows-
ing interface unlike the native implementations in windows() and quartz() devices.

6 Supplement to: RKWard a GUI for R

6. Plugin infrastructure

One of the earliest features of RKWard was the extensibility by plugins. Basically, plugins
in RKWard provide complete GUI dialogs, or re-usable GUI components, which accept user
settings and translate those user settings into R code6. Thus, the plugin framework is basically
a tool set used to define GUIs for the automatic generation of R code.

Much of the functionality in RKWard is currently implemented as plugins. For example,
importing different file formats relying on the foreign package is achieved by this approach.
Similarly, RKWard provides a modest GUI driven tool set for statistical analysis, especially
for item response theory, distributions, and descriptive statistical analysis.

6.1. Defining a plugin

Plugins consist of four parts as visualized in Figure 2 (see Section 7 for an example; for a
complete manual, see Friedrichsmeier and Michalke 2011):

� An XML file (Section 7.1), called a “plugin map”, is used to declare one or more plu-
gins, each with a unique identifier. For most plugins, the plugin map also defines the
placement in the menu hierarchy. Plugin maps are meant to represent groups of plugins.
Users can disable/enable such groups of plugins in order to reduce the complexity of
the menu hierarchy.

� A second XML file describes the plugin GUI layout itself (Section 7.2). Most importantly
this includes the definition of the GUI layout and GUI behavior. High level GUI elements
can be defined with simple XML-tags. Layout is based on “rows” and “columns”, instead
of pixel counts. In most cases this allows for a very sensible resizing behavior. RKWard
supports single-page dialogs and multi-page wizards, however, most plugins define only
a single-page GUI. GUI behavior can be programmed by connecting “properties” of the
GUI elements to each other. For example, the state of a checkbox could be connected
to the “enabled” property of a dependent control. More complex logic is also supported,
as is procedural scripting of GUI behavior using ECMAScript.

� A separate ECMAScript file (Section 7.3) is used to translate GUI settings into R code7.
This ECMAScript file is evaluated asynchronously in a separate thread. RKWard cur-
rently enforces structuring the code into three separate sections for preprocessing, cal-
culating, and printing results. The generated code is always run in a local environment,
in order to allow the use of temporary variables without the danger of overwriting user
data.

� A third XML file defines a help page. This help page usually links to the R help pages
of the main functions/concepts used by the plugin, as well as to other related RKWard
help pages. Compared to R help pages, the plugin help pages try to give more hands-on

6 Plugins are also used in some other contexts within RKWard, for instance, the integrated text editor (kate
part) supports extensions via plugins and user scripts. At this point we will focus only on plugins generating
R code.

7 In earlier versions of RKWard, PHP was used as a scripting engine, and PHP interpreters were run as
separate processes. Usage of PHP was abandoned in RKWard version 0.5.3 for reasons of performance and
simplicity.

Journal of Statistical Software 7

RKWard plugin

GUI layout
XML

Plugin map
XML

R code generation
ECMAScript

Help page
XML

RKWard plugin RKWard plugin

Figure 2: Plugin structure of RKWard. One or more plugins are declared in a “plugin map”.
Each plugin is defined by two XML files, and one ECMAScript file.

advice on using the plugin. Plugins can be invoked from their help page by clicking on
a link near the top, which can be useful after following a link from a related help page.

Changes to the source code of these elements take effect without the requirement to recompile
RKWard.

6.2. Embedding and reuse of plugins

RKWard supports several mechanisms for modularization and re-use of functionality in plu-
gins. File inclusion is one very simple but effective mechanism, which can be used in the
ECMAScript files, but is also supported in the XML files. In script files, this is most useful by
defining common functions in an included file. For the XML files, the equivalent is to define
“snippets” in the included file, which can then be inserted.

A third mechanism allows to completely embed one plugin into another. For instance the
plot_options plugin is used by many plugins in RKWard, to provide common plot options
such as labels, axis options, and grids. Other plugins can embed it using the embed-tag in
their XML file (the plugin supports hiding irrelevant options). The generated code portions
can be fetched from the ECMAScript file just like any other GUI settings, and inserted into the
complete code. Other examples of embedded plugins are options for histograms, barplots, and
empirical cumulative distribution function (ECDF) plots (which in turn embed the generic
plot options plugin).

6.3. Enforcing a consistent interface

RKWard tries to make it easy to create a consistent interface in all plugins. GUI-wise this is
supported by providing high-level GUI elements, and embeddable clients. Also, the standard
elements of each dialog (Submit, and Cancel buttons, on-the-fly code view, etc.) are hard
coded. Up to version 0.5.3 of RKWard it was not possible to use any GUI elements in
plugins which were not explicitly defined for this purpose. In the current development version,
theoretically, all GUI elements available from Qt can be inserted, where necessary.

For generating output, the function rk.header() can be used to print a standardized cap-
tion for each piece of output. Printing results in vector or tabular form is facilitated by
rk.results(). A wide range of objects can be printed using rk.print(), which is just a
thin wrapper around the HTML() function of the R2HTML package (Lecoutre 2003) in the

8 Supplement to: RKWard a GUI for R

current implementation. The use of custom formatting with HTML is possible, but discour-
aged. Standard elements such as a horizontal separator, and the Run again link (see the
section on the results output in the main article) are inserted automatically, without the need
to define them for each plugin.

Regarding the style of the generated R code, enforcing consistency is harder, but plugins
which are to become part of the official RKWard application are reviewed for adherence to
some guidelines. Perhaps the most important guidelines are

� Write readable code, which is properly indented, and commented where necessary.

� Do not hide any relevant computations from the user by performing them in the
ECMAScript. Rather, generate R code which will perform those computations, trans-
parently.

� Plugins can be restricted to accept only certain types of data (such as only one-
dimensional numeric data). Use such restrictions where appropriate to avoid errors,
but be very careful not to add too many of them.

6.4. Handling of R package dependencies

A wide range of plugins for diverse functionality is present in RKWard, including plots (e. g.,
boxplot) or standard tests (e. g., Student’s t test)8. Some of the plugins depend on R packages
other than the recommended R base packages. Examples herein are the calculation of kurtosis,
skewness or the exact Wilcoxon test.

RKWard avoids loading all these packages pro-actively, as Rcmdr does. Rather, plugins
which depend on a certain package simply include an appropriate call to require() in the
pre-processing section of the generated R code. The require() function is overloaded in
RKWard, in order to bring up the package-installation dialog whenever needed. Packages
invoked by require() remain loaded in the active RKWard session unless unloaded manually
(from the workspace browser, or using the R function detach()).

Dependencies between (embedded) plugins are handled using the <require>-tag in the plugin
map.

6.5. Development process

RKWard core and external plugins

Newly developed plugins are placed in a dedicated plugin map file9. Plugins in this map
are not visible to the user by default, but need to be enabled manually. Once the author(s)
of a plugin announces that they consider it stable, the plugin is subjected to a review for
correctness, style, and usability. The review status is tracked in the project wiki. Currently
at least one positive review is needed before the plugin is allowed to be made visible by default,
by moving it to an appropriate plugin map.

8 At the time of this writing, there are 164 user-accessible plugins in RKWard. Listing all is beyond the
scope of this article.

9 under_development.pluginmap

Journal of Statistical Software 9

With the release of version 0.5.5, RKWard gained support for downloading additional sets of
plugins directly from the internet. By simply clicking an Install button in a graphical dialog
(Settings→Configure RKWard→Plugins), an external plugin set is downloaded, unpacked
and its plugin map added to RKWard’s configuration, so it becomes instantly available af-
ter the configuration dialog is closed. External plugin sets are neither officially included nor
supported by the RKWard developers. However, they allow plugin developers to easily ex-
tend RKWard with state-of-the-art or highly specialized features. To achieve this, RKWard
(version 0.5.6) draws on KNewStuff2, a KDE library providing support for GHNS10.

Automated testing

A second requirement for new plugins is that each plugin must be accompanied by at least
one automated test. The automated testing framework in RKWard consists of an R package,
rkwardtests, providing a set of R functions which allow to run a plugin with specific GUI
settings, automatically. The resulting R code, R messages, and output are then compared to a
defined standard. Automated tests are run routinely after changes in the plugin infrastructure,
and before any new release.

The automated testing framework is also useful in testing some aspects of the application
which are not implemented as plugins, but this is currently limited to very few basic tests.

7. Extending RKWard – an example of creating a plugin

As discussed in Section 6, plugins in RKWard are defined by four separate files (Figure 2).
To give an impression of the technique, this section shows (portions of) the relevant files for a
plugin that provides a simple dialog for a Student’s t test. For brevity, the help-file is omitted.

7.1. Defining the menu hierarchy

A so called .pluginmap file declares each plugin, and, if appropriate, defines where it should
be placed in the menu hierarchy. Usually each .pluginmap file declares many plugins. In
this example we only show one, namely, a two variable Student’s t test (see Figure 3). The
pluginmap (<!DOCTYPE rkpluginmap>) gives a unique identifier (“id”), the location of the
GUI description (“file”), and the window title (“label”). The menu layout is defined in a
hierarchical structure by nesting <menu> elements to form toplevel menus and submenus.
Menus with the same “id” are merged across .pluginmap files. Moreover, the position within
the menu can be explicitly defined (attribute “index”). This might be required if the menu
entries are to be ordered non-alphabetically.

<!DOCTYPE rkpluginmap>

<document base_prefix="" namespace="rkward">

<components>

<component type="standard" id="t_test_two_vars"

file="demo_t_test_two_vars.xml" label="Two Variable t-test" />

</components>

<hierarchy>

10 GHNS (Get Hot New Stuff) is a technology platform (software and specifications) for desktop users to share
their work. It is hosted under the umbrella of the freedesktop.org project at http://ghns.freedesktop.org.
In future versions of RKWard, this framework will be deprecated in favor of standard R packages.

http://ghns.freedesktop.org

10 Supplement to: RKWard a GUI for R

Figure 3: Generated menu structure as defined by the plugin map.

<menu id="analysis" label="Analysis" index="4">

<menu id="means" label="Means" index="4">

<menu id="ttests" label="t-Tests">

<entry component="t_test_two_vars" />

</menu>

</menu>

</menu>

</hierarchy>

</document>

7.2. Defining the dialog GUI

The main XML file of each plugin defines the layout and behavior of the GUI, and references
the ECMAScript file that is used for generating R code from GUI settings and the help file
(not included in this paper).

GUI logic can be defined directly in the XML file (the <logic> element). In this example,
the Assume equal variances checkbox is only enabled for paired sample tests. Optionally,
GUI behavior can also be scripted in ECMAScript.

The XML file defines the Student’s t test plugin (<!DOCTYPE rkplugin>) to be organized in
two tabs11. On the first tab, two variables can be selected (<varslot .../>). These are set
to be required, i. e., the Submit button will remain disabled until the user has made a valid
selection for both. The second tab includes some additional settings like the confidence level
(default 0.95).

<!DOCTYPE rkplugin>

<document>

<code file="demo_t_test_two_vars.js"/>

<help file="demo_t_test_two_vars.rkh"/>

11 A screenshot of the resulting dialog can be found in the main article.

Journal of Statistical Software 11

<logic>

<connect client="varequal.enabled" governor="paired.not"/>

</logic>

<dialog label="Two Variable t-Test">

<tabbook>

<tab label="Basic settings" id="tab_variables">

<row id="basic_settings_row">

<varselector id="vars"/>

<column>

<varslot type="numeric" id="x" source="vars" required="true"

label="compare"/>

<varslot type="numeric" id="y" source="vars" required="true"

label="against"/>

<radio id="hypothesis" label="using test hypothesis">

<option value="two.sided" label="Two-sided"/>

<option value="greater" label="First is greater"/>

<option value="less" label="Second is greater"/>

</radio>

<checkbox id="paired" label="Paired sample" value="1" value_unchecked="0" />

</column>

</row>

</tab>

<tab label="Options" id="tab_options">

<checkbox id="varequal" label="assume equal variances" value="1"

value_unchecked="0"/>

<frame label="Confidence Interval" id="confint_frame">

<spinbox type="real" id="conflevel" label="confidence level" min="0" max="1"

initial="0.95"/>

<checkbox id="confint" label="print confidence interval" value="1"

checked="true"/>

</frame>

<stretch/>

</tab>

</tabbook>

</dialog>

</document>

7.3. Generating R code from GUI settings

A simple ECMAScript script is used to generate R code from GUI settings (using echo()

commands). Generated code for each plugin is divided into three sections: “Preprocess”,
“Calculate”, and “Printout”, although each may be empty.

var x;

var y;

var varequal;

var paired;

function preprocess () {

x = getValue ("x");

y = getValue ("y");

echo ('names <- rk.get.description (' + x + ", " + y + ')\n');

}

12 Supplement to: RKWard a GUI for R

function calculate () {

varequal = getValue ("varequal");

paired = getValue ("paired");

var conflevel = getValue ("conflevel");

var hypothesis = getValue ("hypothesis");

var options = ", alternative=\"" + hypothesis + "\"";

if (paired) options += ", paired=TRUE";

if ((!paired) && varequal) options += ", var.equal=TRUE";

if (conflevel != "0.95") options += ", conf.level=" + conflevel;

echo ('result <- t.test (' + x + ", " + y + options + ')\n');

}

function printout () {

echo ('rk.header (result\$method, \n');

echo (' parameters=list ("Comparing", paste (names[1], "against", names[2]),\n');

echo (' "H1", rk.describe.alternative (result)');

if (!paired) {

echo (',\n');

echo (' "Equal variances", "');

if (!varequal) echo ("not");

echo (' assumed"');

}

echo ('))\n');

echo ('\n');

echo ('rk.results (list (\n');

echo (' \'Variable Name\'=names,\n');

echo (' \'estimated mean\'=result\$estimate,\n');

echo (' \'degrees of freedom\'=result\$parameter,\n');

echo (' t=result\$statistic,\n');

echo (' p=result\$p.value');

if (getValue ("confint")) {

echo (',\n');

echo (' \'confidence interval percent\'=(100 * attr(result\$conf.int, "conf.level")),\n');

echo (' \'confidence interval of difference\'=result\$conf.int ');

}

echo ('))\n');

}

Acknowledgments

The software RKWard, presented in this paper, is currently developed by Thomas
Friedrichsmeier (lead developer), Prasenjit Kapat, Meik Michalke, and Stefan Rödiger. Many
more people have contributed, or are still contributing to the project in various forms. We
would like to thank (in alphabetical order) Adrien d’Hardemare, Daniele Medri, David Sibai,
Detlef Steuer, Germán Márquez Mej́ıa, Ilias Soumpasis, Jannis Vajen, Marco Martin, Philippe
Grosjean, Pierre Ecochard, Ralf Tautenhahn, Roland Vollgraf, Roy Qu, Yves Jacolin, and
many more people on rkward-devel@lists.sourceforge.net for their contributions.

The first two authors of this article have contributed equally, and both are available for corre-
spondence pertaining to this article. Questions and comments regarding the software RKWard
should be addressed to the project’s main mailing list, rkward-devel@lists.sourceforge.

rkward-devel@lists.sourceforge.net
rkward-devel@lists.sourceforge.net

Journal of Statistical Software 13

net.

References

Cullmann C (n.d.). KatePart. URL http://kate-editor.org/about-katepart/.

Ettrich M, Taylor O (2002). XEmbed Protocol Specification Version 0.5. URL http://

standards.freedesktop.org/xembed-spec/xembed-spec-latest.html.

Faure D (2000). “Creating and Using Components (KParts).” In D Sweet (ed.), KDE 2.0
Development. Sams, Indianapolis, IN, USA.

Friedrichsmeier T, Michalke M (2011). Introduction to Writing Plugins for RKWard. URL
http://rkward.sourceforge.net/documents/devel/plugins/index.html.

Helbig M, Urbanek S, Fellows I (2011). JGR: Java Gui for R. R Package Version 1.7-9, URL
http://CRAN.R-project.org/package=JGR.

Jarvis S (2010). “KDE 4 on Windows.” Linux J., 2010. ISSN 1075-3583.

KDE eV (2012). About KDE. Berlin. URL http://www.kde.org/community/whatiskde/.

KOfficeOrg (2010). KWord. URL http://www.koffice.org/kword/.

Lecoutre E (2003). “The R2HTML Package – Formatting HTML Output on the Fly or by
Using a Template Scheme.” R News, 3(3), 33–36.

Nokia Corporation (2012). Qt – Cross-Platform Application and UI Framework. Oslo. URL
http://qt.nokia.com.

Plate T (2009). trackObjs: Track Objects. R Package Version 0.8-6, URL http://CRAN.

R-project.org/package=trackObjs.

Raaphorst S (2003). “A Usability Inspection of Several Graphical User Interface Toolkits.”
URL http://www.cs.utoronto.ca/~sr/academic/csi51222paper.pdf.

R Development Core Team (2012a). R Internals. R Foundation for Statistical Computing,
Vienna, Austria. ISBN 3-900051-14-3.

R Development Core Team (2012b). Writing R Extensions. R Foundation for Statistical
Computing, Vienna, Austria. ISBN 3-900051-11-9.

Ripley BD (2004). “Lazy Loading and Packages in R 2.0.0.” R News, 4(2), 2–4. URL
http://CRAN.R-project.org/doc/Rnews/Rnews_2004-2.pdf.

Sarkar D (2008). Lattice: Multivariate Data Visualization with R. Springer, New York. ISBN
978-0-387-75968-5, URL http://lmdvr.r-forge.r-project.org.

Visne I, Dilaveroglu E, Vierlinger K, Lauss M, Yildiz A, Weinhaeusel A, Noehammer C,
Leisch F, Kriegner A (2009). “RGG: A General GUI Framework for R Scripts.” BMC
Bioinformatics, 10(1), 74.

rkward-devel@lists.sourceforge.net
rkward-devel@lists.sourceforge.net
http://kate-editor.org/about-katepart/
http://standards.fr eedesktop.org/xembed-spec/xembed-spec-latest.html
http://standards.fr eedesktop.org/xembed-spec/xembed-spec-latest.html
http://rkward.sourceforge.net/documents/devel/plugins/index.html
http://CRAN.R-project.org/package=JGR
http://www.kde.org/community/whatiskde/
http://www.koffice.org/kword/
http://qt.nokia.com
http://CRAN.R-project.org/package=trackObjs
http://CRAN.R-project.org/package=trackObjs
http://www.cs.utoronto.ca/~sr/academic/csi51222paper.pdf
http://CRAN.R-project.org/doc/Rnews/Rnews_2004-2.pdf
http://lmdvr.r-forge.r-project.org

14 Supplement to: RKWard a GUI for R

Affiliation:

Stefan Rödiger
Lausitz University of Applied Sciences
Department of Bio-, Chemistry and Process Engineering
AND
Kardiologie-CCM, Charité-Universitätsmedizin Berlin
Germany
E-mail: stefan_roediger@gmx.de
E-mail: rkward-devel@lists.sourceforge.net

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 49, Issue 9 Submitted: 2010-12-28
June 2012 Accepted: 2011-05-06

mailto:stefan_roediger@gmx.de
mailto:rkward-devel@lists.sourceforge.net
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Asynchronous command execution
	Object modification detection
	Choice of toolkit and implementation languages
	On-screen graphics windows
	Plugin infrastructure
	Defining a plugin
	Embedding and reuse of plugins
	Enforcing a consistent interface
	Handling of R package dependencies
	Development process
	RKWard core and external plugins
	Automated testing

	Extending RKWard – an example of creating a plugin
	Defining the menu hierarchy
	Defining the dialog GUI
	Generating R code from GUI settings

